SLINC 1.0: A GUI for controlling synthesis and linking instruments in RTcmix

David Topper
Virginia Center for Computer Music
University of Virginia, Charlottesville, VA 22903 USA
topper @virginia.edu http://www.people.virginia.edu/~topper

Abstract

SLINC is graphical interface for controlling parameter fields of RTcmix instruments in real
time, written using the powerful open source Gimp Tool Kit (GTK). It runs under Linux
systems, and is capable of controlling multiprocessor, and multichannel RTcmix instruments.
SLINC also supports a lightweight parser which can be used to send musical sequences, with
the synthesis parameters of each element being controlled in real time.

Input control can be the GUI itself (e.g., sliders and dials) as well as MIDI, Joystick, and mouse
/ touchpad. SLINC works on any Linux system, but has been a result of parallel work on the
Semi and Portable Audio Workstation (SPAWN and PAWN). By allowing flexible real time
control of musical events, a laptop running SLINC and RTcmix can be used extensively in

performance. Research on the current state of using less standard, controllers will also be

presented.

I. Overview

SLINC is a graphical user interface for
controlling RTcmix in real time. Over the past
several years many special purpose interfaces
have been created, often with the intention of
realizing a specific idea or paradigm. SLINC is
a more generic attempt, with a primary focus
being on flexibility and ease of use. The goal is
to facilitate controlling various parameters from
seemingly limitless sources hopefully well
beyond the scope of any premeditated design.

Currently there are a limited number of external
control inputs, MIDI being the most popular.
Not surprisingly, a main function of SLINC is to
map MIDI events to various types of control
mechanisms. External control, however, is not
limited to MIDI alone. Virtually any input to a
computer can be a control source. SLINC is
designed to facilitate new connections. A recent
example is controlling various synthesis and
effects parameters from a normal game joystick
and mouse.

II. Internal Structure

SLINC relies heavily upon the powerful features
of GTK (Gimp Tool Kit) and support GDK
libraries (see Resources). An obvious reliance is
the ability to draw windows, sliders and other
GUI widgets. But perhaps even more important
is the internal callback structure employed by
GTK which allows different mechanisms to
interact, which is the primary function of
SLINC. In the end, SLINC sends data via TCP
socket connection to the RTcmix engine, which
in turn listens to the socket and parses commands
accordingly in real time. This classic client
server architecture promotes modular design that
SLINC exploits.

A cornerstone of the GTK callback structure
used by SLINC is the adjustment. It might be
thought of as the nuclear unit of application
design. It is not, however, the only unit. Many
musical GUI applications make heavy use of the
infamous slider as a primary building block. In

mailto:topper@virginia.edu
http://www.people.virginia.edu/~topper

GTK, a slider (know as a category of range
widgets) is a widget which can control various
aspects of an adjustment, namely its value.

The basic process is as follows. A widget (e.g., a
slider), and specific signal are connected to an
adjustment. When a slider is changed, it emits a
signal. Through the adjustment/signal/callback
mechanism, when a slider is changed, so is the
adjustment's value. Other widgets and functions
can be connected to an adjustment so that when
they change, so does everything else. The
alternative approach would be to create a
complicated network of signals and connections,
which would be far less elegant and more
difficult to program. Adjustments can also be set
"manually" by special gtk_set_adjustment()
function calls.

GDK (GTK's supporting library) provides
similar functionality with broader scope. The
function gdk_input_add() allows monitoring of
virtually any device or object (e.g., the serial,
midi, or joystick port). When some change is
detected on the device, the same signal and
callback mechanism described previously can be
triggered.

The following simple example should illustrate
using these ideas in tandem. Let's assume
control of pitch is done by both slider and MIDI
note_on events. So in this case pitch is a (GTK
style) adjustment. The midi port is monitored by
gtk_input_add(). Whenever MIDI byte come in
via the port, the appropriate callback functions
are triggered and adjustments changed.
Specifically, a midi event parser and a function
to set the adjustment value. Similarly, a slider
(range widget) is also connected to the pitch
adjustment. So whenever a note_on event is
received, the adjustment and slider are changed
to reflect the new value. Finally, another
callback is connected to the pitch adjustment.
B h

a‘ M l.
© GTK pitch adjustment

10
15
20
an
|

TCP_write()

The elegance of the paradigm allows for great
flexibility. Not limited to simple widgets and
adjustments, callback functions can be used to
implement higher level functions. Namely, a
lightweight MINC style parser written with yacc
and lex. MINC is the scripting language used by
RTcmix. By means similar to the above, a MIDI
note_on event can trigger a callback function
which reads in a buffer containing a script. The
buffer is parsed and TCP data (along with any
other adjustment setting) sent out accordingly.

table lookup

for (i=0;i<5;i=i+1}) {
PLAY(note_on_pitch_val,...)
: |
GTK pitch adjustment

TCP write()

In order to allow multiple mappings of controls
and events, a lookup table is consulted to
determine which events should control what
structures. In the case of the last example, a
MIDI note_on event lookup would return a
pointer to a string buffer containing the mini
parser instructions. In the previous example, the
table might be used to set scale ranges. The user
may want key values from C2 to C5 to span only
one octave of pitch values.

III. Development Issues

The Linux operating system offers many virtues
for program development. Its open source
paradigm has led to a robust, stable, high
performance platform that continues to evolve. It
has grown immensely in popularity from humble
beginnings as a hacker's hobby. There are,
however, issues that directly affect software
projects like SLINC.

On a certain level, a software application is
limited by the devices it can work with. This is
not to say that the more devices that work with a
given system, the better the system is. Rather, a
degree of operability is necessary for an
application to be viable. SLINC running under
Linux has just reached this stage.

MIDI and audio support under Linux is slightly
limited, but rapidly improving. There are two
primary APIs for both: OSS (Open Sound
System) and ALSA (Advanced Linux Sound
Architecture). The former, despite its name, is a
commercial product and the latter a free, open
source attempt to provide professional grade
audio support. Both have virtues and support
several commercial MIDI and digital audio
cards.

Both SLINC and RTcmix currently only support
the OSS audio api. ALSA support is under
development, but is needed by both as the two
drivers cannot coexist (i.e., it is not possible to
use OSS for audio and ALSA for MIDI). SLINC
does, however, offer internal support for the
Midiator systems MS-124w serial midi box.
This allows MIDI input on any PC with a serial
port, most notably laptops. Such support would
not have been possible with help and
specifications of the MS-124w made publicly
available by Midiator Systems.

The freely available GTK libraries were a
primary inspiration for SLINC. The internal
signal/adjustment/callback structure = seemed
perfectly matched for a control message routing
application. Online examples, tutorials, and an
active mailing list community were essential in
getting rapidly fluent with the API and its higher
functions like gdk_input_add(). Future
development is planned in the areas of new
control systems and devices. Due to the flexible
nature of GTK, work can concentrate on
specifics, rather than on how to fit the end result
into the existing framework. That is, only the
respective new callback routines need be
designed.

The PAWN and SPAWN platforms are also a
direct response to these issues. SLINC is partly
an attempt to provide usable interface for those
platforms. The hope is that by providing
consistent and reliable platform with compatible
components, audio development can continue to
grow in terms of both body of work and support
by audio and other hardware vendors.

IV. Resources

Source code and executables for SLINC can
downloaded from:

http://presto.music.virginia.edu/SLINC

The latest source code for RTcmix can be
obtained via ftp:

ftp://presto.music.virginia.edu/pub/rtcmix

GTK source and documentation can be found at:

http://www.gtk.org

Information on PAWN and SPAWN can be found
at:

http://www.audio-workstations.com

A good starting place for information on Linux
is:

http://www.linux.org

The website for OSS is located at:

http://www.opensound.com

The ALSA website is:

http://www.alsa-project.org.

http://www.alsa-project.org/
http://www.opensound.com/
http://www.linux.org/
http://www.gtk.org/
http://presto.music.virginia.edu/SLINC

