
Multichannel Audio with RTcmix

John Gibson and David Topper

The Open Source software paradigm offers many benefits to
users and programmers alike, not the least of which is the ability
to take existing code and modify it to suit a particular need. This
can be incredibly useful to a musician. Imagine being able to
redesign a trumpet or violin to investigate a new musical idea.
This is the story of RTcmix and multichannel audio. An open
package from the outset, Cmix was made real time in 1997.
Enhancements have continued, the latest of which were
presented at SEAMUS Y2K at the University of North Texas.
Work has centered on two new features: output to multichannel
audio cards, and an internal signal-routing scheme.1

Before describing these new capabilities, let’s take a look at a
typical RTcmix score. You control RTcmix by feeding it a script
written in a simplified dialect of the C programming language. If
RTcmix likes the score, it’ll play the result in real time or write
it to a sound file. People who have never programmed usually
get the hang of script-writing pretty quickly.

This score reads random snippets from a sound file and sprays
them around the stereo field:

rtinput("/snd/bulldozer.aiff")
file_dur = DUR()
dur = 0.2

for (start = 0; start < 20; start = start +
0.1) {
 instart = random() * file_dur
 amp = random()
 stereo_loc = random()
 STEREO(start, instart, dur, amp, stereo_loc)
}

The resulting sound lasts 20 seconds. Every tenth of a second,
the STEREO instrument fires off a new “note.” For each note,
the time to start reading on the input file, and the output
amplitude and stereo location, are randomly chosen. The ease
with which you can construct loops of this sort is a real strength
of RTcmix.

But what if you want to process this 20-second sound? That’s
when you need the new signal-routing capability. Instead of
sending the output of the STEREO instrument to the sound card,
you route it to the input of another instrument, REVERBIT, and
send that instrument’s output to the sound card.

Every electroacoustic musician knows how to use a mixer, so we
thought it best to adopt mixer terminology when designing the
new signal-routing feature. A “bus” is an internal path in a mixer

that carries audio signals from one place to another. For
example, the “main mix bus” combines signals from multiple
channels so that they can be sent to a stereo mix-down deck; an
“aux send bus” routes signals to an effects processor. So we
provided RTcmix with a notion of buses.

In RTcmix there are three kinds of bus:

in input from a sound file or from a real-time audio
source (e.g., microphone)

aux intermediate bus, functioning as either an input or an
output, used to connect instruments together

out output to a sound file or to the sound card

You specify the signal routing using a new function called
bus_config. We wanted it to be easy to modify old scores to take
advantage of the new features, so this bus_config function is the
only thing added to the score interface.

Let’s modify the score given above so as to reverberate the
looped sound. First we tell STEREO to send its output to the
“aux 0-1” stereo bus, and REVERBIT to take its input from the
same pair of buses:

bus_config("STEREO", "in 0", "aux 0-1 out")
bus_config("REVERBIT", "aux 0-1 in", "out 0-
1")

Then, following the STEREO loop given earlier, we add some
code to run the reverberator:

reverb_time = .5
wet_dry_mix = .5
right_chan_delay = .1
low_pass_cf = 2000

REVERBIT(0, 0, dur=20, amp=1, reverb_time,
 wet_dry_mix, right_chan_delay,
low_pass_cf)

Changing the signal paths is as easy as editing the “bus_config”
lines.

The other new feature in RTcmix is the ability to take full
advantage of multichannel sound cards. We’re not limited to two
output buses. We can have as many as the sound card allows (or
more, if writing to a file). Let’s say you want to add two output
channels to the score we’ve been writing: have a flanger process
the STEREO loop and send the output of that to an additional
pair of speakers, while retaining the reverberated output to the
first pair of speakers. You need to add this bus_config statement
to the ones already given:

bus_config("FLANGE", "aux 0-1 in", "out 2-3")

And then some lines to run the flanger:

reson = 0.1
max_delay = 0.004
depth = 80
speed = 0.5
wet_dry_mix = 0.5
FLANGE(0, 0, dur, 1, reson, max_delay, depth,
 speed, wet_dry_mix, 0, inchan=0,
stereo_loc=1)
FLANGE(0, 0, dur, 1, reson, max_delay, depth,
 speed, wet_dry_mix, 0, inchan=1,
stereo_loc=0)

(FLANGE takes mono input only, so you need to process each
channel separately.)

All existing RTcmix instruments, which output in stereo, can
take advantage of this flexible output bus scheme. You just
change which pair of outputs the instrument uses.

A new instrument, MIXN, lets you address all outputs in more
complex ways: you can define a path for a mono sound to
follow, weaving it among eight or more speakers. Here’s how:

dist = 10
speakerloc_p(dist,0, dist,45, dist,90,
 dist,135, dist,180, dist,225,
 dist,270, dist,315)
dist = 8
path_p(0,dist,0, 1,dist,45, 2,dist,90,
 3,dist,135, 4,dist,180, 5,dist,225,
 6,dist,270, 7,dist,315, 8,dist,360)
rates(0,1, 5,1, 12,10, 20,1)

MIXN(start=0, instart=0, dur=20, inchan=0,
amp=1)

The speakerloc_p function defines speaker locations in polar
coordinates: distance and angle, relative to a point in the center.
(Distance is not in any real unit of measure; it’s a computational
value that loosely corresponds to reality.) The path_p function
describes the path the sound will take, also in polar form: time,
distance, and angle. We can speed up or slow down the rate of
movement with the rate function, which takes time / value pairs.
So the code given above would spin a sound around the room,
provided speakers are actually placed in a circle. A joystick
interface for controlling the path in real time is in the works.

So from the user’s perspective, not much has changed in terms
of scorefile syntax. But a great deal has changed under the hood:
the scheduler needed some reworking, and the mechanism by
which instruments get and send audio data needed complete
rewriting.

RTcmix uses a queue / heap scheduler. Note events are stored on
a heap, indexed by start time, then placed on a playback queue

until done. For the bus and multichannel implementation, queues
were added to support the various bus types and channels. This
made it possible to insure that instruments play in the right
order. In the first example score above, REVERBIT shouldn’t
try to make any sound before STEREO has provided it with
some input! This setup also paves the way for Symmetric
Multiprocessing: instruments on the same queue can execute on
multiple processors. Work is currently being done in this area.

The structure of the scheduler offers a high degree of flexibility
for interface designers. An interface is a program that can send
RTcmix commands in real time. Most of these programs have
graphic user interfaces, such as Luke Dubois’ Virtchla2, a
simulation of a classic analog sequencer. Virtchla takes care of
event timing; the RTcmix scheduler plays the notes as soon as it
receives them. It’s also possible for an interface program to send
RTcmix a series of events — in effect, a small scorefile. RTcmix
can schedule the events, and then play them while receiving
more events in real time.

Linux has proven an excellent platform for development. Its
speed and reliability served in all aspects of the project. The
basic audio API used by RTcmix running under Linux is
provided by the commercial OSS (Open Sound System) driver3.
Their support of the RME Digi96/8 8-channel audio card made it
easy to extend RTcmix from stereo to multichannel output.
There is an Open Source audio driver for Linux, called ALSA
(Advanced Linux Sound Architecture)4, which is starting to
support multichannel audio cards from MIDIMan, Sonorus and
RME, including the 24-channel RME Hammerfall. RTcmix
currently cannot use the native ALSA API, but support for
ALSA is planned.

Current PC architecture is fast enough to realize many musical
ideas that the new RTcmix features encourage. We hope that
more computer musicians will join us in exploring and extending
RTcmix.

John Gibson David Topper
johngibson@virginia.edu topper@virginia.edu
University of Virginia

1 RTcmix runs on the Linux and Irix platforms. A port to
Mac OS X is under consideration. The RTcmix source code is
available from ftp://din.music.virginia.edu/pub/RTcmix.
2 Virtchla and other RTcmix interfaces are available from
http://www.music.columbia.edu/cmix.
3 http://www.opensound.com
4 http://www.alsa-project.org

