GAIA: Graphical Audio Interface Application

David Topper

Mclntire Dept of Music, University of Virginia
topper@virginia.edu

Abstract

GAIA (Graphical Audio Interface Application) is an
open source interface for controlling the RTcmix
(Garton, Topper 1997) synthesis and effects processing
engine. Until recently, most RTcmix research has been
limited to using text- based scorefiles. The primary
motivation behind GAIA is to build upon this paradigm
by providing a graphical front end. An emphasis has
been placed on creating an environment that is easy to
learn, robust and open source to allow for third party
contribution. GAIA breaks new ground in that it
supports both graphical and text based programming
in the same application. Objects (or nodes within
the program's graph- like control structure) can
themselves be small scripts, written in Perl.
These scripts can operate on data within the
application as well as trigger RTcmix events in
real time. GAIA unites two powerful open source
projects, RTcmix and Perl, and provides a
powerful high level GUI for working with both.
Through these mechanisms, GAIA creates a flexible
and powerful environment for controlling any number
of synthesis and effects processing parameters,
bringing various techniques to a new level of
realization.

1 Introduction

GAIA is a graphical network- style application
for controlling various musical processes.
Specific structures (called objects) are created on
a blank screen (called a canvas) and connected
together like objects in a multi- node graph.
Signals are sent from parents to children. The
basic concept is similar to that employed by other
graphical network based control applications (eg.,
Max/MSP, Pd, Open Music, Alsa Modular Synth,
GLAME, etc...). GAIA differs from other such
applications on several levels. It is completely
open source, and distributed under the GNU
General Public License (GPL) (gnu.org 2004).
Synthesis methods are not “sub patches” within
the program, but are instead RTcmix
“instruments.” GAIA's communication with

RTcmix is done via both TCP connection and
directly via the new “imbed” module. So the
coding of various synthesis and effects

processing algorithms is kept in an environment
best suited for speed and low latency. This is
becoming a trend in other applications as well
(eg., Percolate (columbia.edu 2004)). Perhaps the
most notable difference is GAIA's incorporation
of Perl directly within the graphical structure.
User's can combine any level of graphical or
scripted control to suit the compositional
requirements at hand.

In order to help support the Open Source
paradigm, GAIA offers an APl for third party
developers to facilitate the creation of new
objects and features within the program. Recent
work has focused around video processing, which
is now part of the main GAIA distribution, not an
add- on module or separate package. Video data
is broadcast from the “video tracking object” in
the same fashion as any other object. GAIA
forms part of the development on the Portable
and Semi- Portable Audio Workstation (Topper
2001).

2 Design and Implementation

GAIA is written using a combination of C and
C++ and built with the GTK toolkit (gtk.org
2004), running under Linux. Somewhat derivative
of the Motiff (opengroup.org 2004) API, GTK
objects and functions are connected via callback
structure. Specifically, the program makes
extensive use of the GTK/GNOME canvas. This
toolkit allows for many different types of
graphical objects to be rendered, then moved
around the program window without extensive
programming overhead. After the basic design is
implemented, the canvas takes care of moving
and redrawing GTK objects and other structures.
As aresult, someone designing a new GAIA object
only needs a very basic knowledge of GTK.

—= Gaia (v 0.1) =@l
File Cptions Help |
[~ I =
& PROG_CHANGE — — — — —
—
0.00 — — Rindur Damp Dy ‘Wet Fade Width
DUR AMP ol =1 — — | —| —
— — 0.0 i} 1} i} 0.0 0
localhost a 0.00 1.0 5 5 5 05 5
not connected 5 o010 2.0 10 10 10 1.0 J 1a
mJ 0.20 3.0J 15 15 15 1.5 1%
/ 15 0.30 — 4.0 zn zo z0 z.0 20
RTcmix sequence 20 D.4UJ (R | F'Eel B0 25 25 25 2.5 3
T 25 0.3 2l len 30 30 30 J 3.0 3a
load(iFREEYERE) 3 30 0.60 0.00 oo > e o e s s
Hinput;ALDIo) 35 0.70 010 ° o o a0 J an A
makegen(1.0,24,1000,0,0,11 a 0.80 0.zo 010 an 45 45 40 a5 o=
makegeniz,24,1000,0,1,1,0 = 0.90 0.30 Dz : 45 o i
Ll 0.30 10.0 50 50 50 5.0
50 [045 oo 040 11.0 55 55 55 5.5 &
n 55 0.60 0.50 12.0 B0 &0 &0 6.0 50
G0 0.70 0.60 13.0 65 65 BS 65 63
4 65 0.80 0.70 14.0 70 J 70 70 7.0 70
Insert Delate 70 D,SDJ 0.go 15.0 75 75 75 75 75
— 75 1.00 0.90 16.0 a0 80 &0 5.0 80
g0 = R 17.0 85 85 a5 8.5 g5
85 0.33 18.0 30 an an a0 a0
30 19.0 a5 95 35 9.5 35
WL UME 35 20.0 100 100 100 10.0 1DDJ
100
0.0 - |3.07 [7o.5 [EEE] [z9.5 [18 [100
104

S

PN FREEVERE
0.00
—

FaADE_FREEYERE
- 0.00

[ooo Jooo [103 foas Juss [ooz [ao7 [ro5 [ass [ess [115 Jioo

Figure 1.

This versatility has facilitated several useful
features common throughout the environment.
The entire program window, or canvas, can be
predefined to virtually any size then scrolled
up/down or left/right. This allows for the
creation of a graphical network larger than the
actual screen size. Similarly, the canvas and all
the objects contained therein can be dynamically
resized via zooming in or out. The GTK/GNOME
canvas takes care of resizing the individual items
therein. Specific objects are also available to
control any of these functions. For example, if a
user wanted to trigger a screen change via MIDI
foot switch message, they would simply connect
the MIDI event object to the screen change object.

Special purpose objects can also be displayed
outside the canvas window. In the case of the
Perl text editor, the object itself shows up as a
small node with “show” and “hide” buttons which
respectively call up an external text editor for
working on the specific script. Also, in the case
of the video tracking object, the video image is
displayed in a separate window external to the
main canvas. These features facilitate cleaner
screen organization.

Objects are highlighted following mouse focus,
including connection lines (also known as patch
cords in other applications). So when the mouse
is positioned over a particular item, its outline
appears in bright red. This lets the user know
precisely what he/she is about to select.
Multiple canvases can be created, all of which are
linked in the same application or patch.

As with most graphical network based GUI
applications, signals are sent throughout tree like
structures. A single object can broadcast a signal
to multiple child objects. Similarly, an object can
broadcast different types of data through its
output connections. Signal execution can be
ordered left- to- right, right- to- left or any custom
ordered variation. Double clicking any object will
by default initiate a signal path. All objects take
input signals from their first, uppermost left-
hand side input connection box.

2.1 Basic GAIA Implementation

GAIA objects fall into three general
categories: objects specific to GAIA, those used
to directly control an individual RTcmix process,
and Perl scripts. All objects have configurable
options specific to their operation (eg., minimum

(=101
File Optians Help |
1 I —
A — —
Slider Frqu
o.oo [u]
oo s00f
©-20 100
ggg 150
- zZoo
0.50
080 ==0
o.ro SEE
0.50 =50
0.90 <00
450
0.96 sO0
S50
600
G650
Timer o. Foo
Fs50
S00
850
[00
as0
1000
G675
Text Editor
use RT; =
losd "W aETABLE"):
makegen(l, 24, 1000, 0,0, 0.01,1, 01,02, 0.4, 0);
makegen(Z, 10, 3000, 1, 0.5, 0.23]
$start = 0.0;
Fscale = Finl;
Fren = FinZ:
forisi=0;Hi=5;Fiv+)
worETABLEEstart, 2, 2000, $freq, 0);
Hstart += 0.1 "Escale;
Ffreq "= 1.1;
Run
&

and maximum value, string or floating point data,
orientation, size, etc...).

GAIA specific objects include the standard
range of dliders, data boxes, timers, 2D graph
plots, and logical operators. Figure 1 illustrates a
subset of those objects controlling a single
running RTcmix process. In this example, MIDI
events are used to both start and control the
musical process. This is done by connecting the
MIDI object to an RTcmix TCP object, which in
turn triggers a short RTcmix script (non Perl). So
when a PROGRAM_CHANGE signal is received, it
triggers a sequence of events. Similarly, VOLUME
and PAN messages are used to process the

incoming audio stream using the RTcmix
“FREEVERB” reverberation algorithm, each
parameter of which is controlled via slider
objects.

Singular RTcmix objects (as in figure 1) can

communicate either to a running RTcmix engine via a
TCP socket connection, or directly via the RTcmix
“imbed” module. The latter allows RTcmix to be
incorporated into the GAIA (or any other) program
itself via statically linked library. In the case of TCP
sockets, multiple engines can be controlled on virtually
any number of hosts. This allows GAIA to be used as a
network controller for a cluster of RTcmix engines
running on different machines.

2.2 The Power of Perl

Although RTcmix has been using Perl as a
front end parser for many years, combining that
ability with a graphical front end represents a
new paradigm. In the case of GAIA, Perl is not

parsing a text file. Instead, it parses and
evaluates a buffer in real time, maintaining a
persistent state during the entire run of the
application. Perl provides built in functionality
for this. Specifically, GAIA uses the eval_sv()
function which is part of perlembed (perl.org
2004).

Figure 2 illustrates a basic implementation of
the Perl text buffer object. In this example, a Perl
script takes input from from two slider objects
and is executed by a GAIA timer object, which
takes two inputs (atrigger to start pulsing and a
pulse interval). The script contains a loop which
plays five notes in ascending pitch. This
particular script has three inputs, one to execute,
and two for input variables. The first input
variable controls the “pulse” rate at which the
script is executed. It isidentical to the value sent
to the timer object, but in this case is also used to
control scaling of note duration as the tempo
changes. The second variable is frequency, used

File Options

Help

Wideo

Start Capture

—
localhost
not connected

RTcmix sequence
loadM AaYETABLE)
setline(0,0, 5,1, 10,1, 15,0)
makegen(z, 10, 1000, 1, 0.3
reset(10000)

Mumbox

1700

Delete

Insert

AmpJ

Frqu
i o
50
1001
150
200
250
3001
as0l
400
450
5001
550
600
6501
700
7501
ao0l
850
a0nl

501
1001
1501
ptaln]
2501
3001
3501
400
450
S001
a501
[=alu]
G501
Tooi
TS0
=1al]
a501
Q0o

350 4501
1000 1000

1091 1177
& A
[outn

Timer |07

bus_confl 4
—S0MA Ly s VETABLE

[

ki
rMumb oy
0.55
— —
Scale
0.00 (0.00 (300
ooo oo pooo

—

Slider
(@]
010
0.z0
0.30
040
0.50
0.60
0.70
0.50
0.390

014

|N Tia Y

—r plink
—

RS el N

WAWETABLE

[ooo [oz1 [1as1 [1177 [o11

F
to control the base starting frequency of the
script loop. Both variables are controlled via

slider objects. In the case of tempo, the same
slider is used to control the GAIA timer object as
well as send the timer interval value to the Perl
script.

Perl objects can also be created in a separate
text editing window. As illustrated by Figure 2,
special reserved variables are $inX and $outX
where X corresponds to the respective input or
output connection box number. The complete
Perl programming language is supported and
many separate Perl objects can be used
simultaneously. In this sense, GAIA could serve
as an IDE for Perl development, facilitating the
creation of distinct subroutines as visibly
separate objects. Data is shared globally by
default, but can also be made local in scope as an
option. Each Perl text box in GAIA that is not
defined to be global in scope is actually a Perl
subroutine. This fact is hidden from the user,
with GAIA maintaining a list of all created Perl
buffers and their respective subroutine names.
This allows data to be cast as local in scope, as
well as providing a speed increase by having Perl
buffers evaluated in advance of signal execution.
Buffers are evaluated either by sending a signal to

igure 3.

their second input data box, or by clicking on the
“eval” button in the perl text buffer editor. Any
valid perl expression can be executed.

GAIA also enlists the power of Perl for logical
expression evaluators. These objects, called Perl
signal condition objects, are similar to Perl text
buffer objects. The main difference is that they
take input data and are evaluated for boolean
true/false condition. If true, the signal and data
are passed along to the object's outputs.

2.3 Real Time Video Processing

Since GAIA places control of virtually any
synthesis / effects processing parameter into a
robust and vastly reconfigurable environment,
control mechanisms can move beyond MIDI and
other standard protocols. By reading pixels from
a live video feed it is possible to implement any
number of computer vision algorithms to control
audio synthesis and effects processing.

Figure 3 shows a simple RTcmix WAVETABLE
instrument being controlled by short and long-
term image pixel difference change. In this
example, a process is started by double clicking a
start- node object, called a blinker object. Blinker

objects simply allow signals to pass through,
registering a brief color change (or blink) when
the signal is received/transmitted. They may also
be used to initiate a signal path. In this case, the
signal starts atimer object which sets the control
rate for video processing. With each signal sent
to the video tracking object, a single frame is read
and analyzed. Currently up to thirty frames per
second can be processed, but this is only a
hardware limitation imposed by commercial video
equipment. Theoretically, higher end video frame
grabbers can also be used to achieve an even
higher data acquisition rate. The video tracker
object takes a trigger as input, and sends out
visual analysis data of the incoming video stream.
In this case, once the process is started, starting
frame difference is used to set the tempo of a
pulsed sinusoid. Previous frame difference is
used to control pitch. So as an object enters the
field of view, atone begins pulsing. As the object
moves about in that field, the pitch increases /
decreases in conjunction with that movement.
Currently, only very basic image processing
algorithms are supported: frame difference (both
from immediately previous and start frame) and
color intensity. Previous frame difference can be
used to approximate current movement in a field
of view, it can be thought of as measuring motion.
Start frame difference can be used to measure the

change in state of a scene (eg., a dancer's
entrance), it also sometimes referred to as
occlusion. Color intensity can be used to monitor

the entrance or exit of a specific color coded
entity.

Mapping of the start frame difference data is
done via the GAIA scale object, which is
particularly interesting due to it's dynamic ability.
The scale object can take five inputs: input data,
max and min, and output max and min. Each of
these can be varied in real time. So, for example,
if the user wanted to change the output register
in this example, s/he would simply change the
output maximum and/or minimum.

GAIA uses the Video4Linux (V4L) and the Linux
IEEE 1394 (aka. Firewire) drivers for grabbing
video frames. The former offers a wide range of
support for PCl and PCMCIA video input devices,
many of which perform a good deal of
computational work on board, thus increasing the
effective frame processing rate. Whereas the
latter provides support for more recent hardware
and is more general purpose.

3 Internal Programming API

GAIA is written primarily in C but uses some
C++ where applicable, particularly when
communicating with the RTcmix “imbed” module.
Various structures and functions exist to provide
an easy to use API for creating new objects.

3.1Structures

The top level structure is called a "canvas
object.” It represents the top level of the visual
component you see on the screen. The object
contains pointers to specific objects as well as the
graphical widgets necessary for rendering and
movement; this includes the graphical component
of an object's connection (eg., input and output)
boxes. Canvas objects point to a single or linked
list of "signal_objects.”

The second level structure is called a
"signal_object.” This is the primary unit of object
design. All objects are signal objects, or groups
of signal objects. This structure contains various
pointers to specific objects and their internal
data. All computational aspects of an object are
done on this level as well. So, for example, in the
case of the Perl object the text editing window is
part of the canvas object (mentioned previously)
but the specifics of executing the running Perl
interpreter (to parse and evaluate the specific
text) are done in the signal object, specifically by
the signal_function.

The signal object also maintains pointers to an
object's internal (vs. graphic) connection box
structure. Each "box" is a basically a pointer to a
series of "connection" structures which are in
essence special purpose objects themselves. As a
result, it is the signal object that receives event
triggering routed through the input and output
boxes for a given object network.

3.2Functions

Creating a new object is relatively easy. There
are four basic functions required:
properties_window(), creation_function(),
connection_function(), and signal_function().

The properties_window() function allows the
user to configure the particular object. An API is
provided to help the programmer create a pop-
up dialog box for the given object. This is used to
set initial parameters such as maximum and
minimum value, data type, size, filename, and any
other specific options necessary to the object in
guestion.

Once the user enters the information from the
above dialog, it is then passed to the

creation_function() via an in_params[] array. The
creation function basically defines the main
aspects of the object, including any special
purpose graphical objects or GTK structures, as
well as input/output boxes. GTK supports a box
packing mechanism (gnome.org 2004) for
graphical objects. GAIA simplifies that paradigm
somewhat by requiring the programmer to
provide only a top level pointer to the highest
level packed box. This pointer is used by the
canvas_object structure to draw the objects and
move or resize them on the screen canvas as
needed.

Asin the properties_window() function, an API
is provided here to facilitate connection box
creation. The programmer simply needs to define
the total number of boxes, their type (INPUT,
OUTPUT, DATA, TEXT, etc...), the edge on which
they will be drawn (NORTH, SOUTH, EAST, WEST)
and the location along the respective edge (in
percent).

When object's are connected together, the
respective connection_function() is executed.
This function allows objects to make specific
configurations depending on what they're
connected to. For example, if a parent object
outputs floating point data the child object will
receive this information at connection time and
then be aware of this data type as input. This
system allows for the creation of "smart
connections" which can be used to facilitate
special purpose connections between objects.
Scale objects, for example, make use of the
connection_function() in order to set minimum
and maximum values for their input and output.

Event triggering is accomplished through each
object's signal_function(). Signal functions are
member functions of the signal_object structure.
The programmer simply needs to determine in
this function what is done with input and output
data, or if some other action needs to be taken
(eg., writing to a TCP socket). Once an object is

triggered, it sends out signals to every object
connected to all of its output boxes (defined
earlier). The process is recursive and continues

until there are no more connections.

Once the four main functions are defined, the
object's respective C file can be included in the
Makefile and then compiled into the executable.
There also is some minor additional bookkeeping
necessary to maintain object types and specific
attributes.

4. Future Directions

GAIA, while stable,
application.

is a relatively new
A main area of work in the short
term will focus around the creation of new
objects. GAIA also currently stores configuration
data in a proprietary format. The next logical
stage is to replace this storage mechanism with
XML (xml.org 2004) which is rapidly becoming a
new standard.

RTcmix has recently been ported to OS X.
GAIA support for OS X, however, is still in a very
preliminary phase. Support for X windows based
libraries like the GTK canvas, however, still
involves some additional work.

As a corollary to GAIA's new video processing
object, a video output object is in the works using
the Linux SDL library and Gstreamer. The SDL
library has already been used to port many
commercial games and graphics applications to
Linux. Gstreamer aims at being the new default
Linux multimedia API, but is still in the early
development phase. GAIA can be downloaded via
ftp at: http://presto.music.virginia.edu/pub/gaia

References
Garton B. G.,, and D. Topper. 1997. RTcmix --
Using CMIX in Rea Time, Proceedings of the

International Computer Music Conference, 1997.
Topper, D. T. 2001. PAWN and SPAWN (Portable
and Semi Portable Audio Workstation). Proceedings of
the International Computer Music Conference, 2001.
http://developer.gnome.org/doc/APl/gtk (n.d.)
Retrieved, 1/16/04
http://www.gnu.org (n.d.) Retrieved 1/10/04
http://www.cycling74.com (n.d.) Retrieved 1/20/04
http://http://www-
crca.ucsd.edu/~msp/software.html
1/22/04
http://www.ircam.fr/equipes/repmus/OpenMusic/
(n.d) Retrieved 1/22/04
http://www.agnula.org/packages/alsa_modular_syn
th/ (n.d.) Retrieved 1/28/04

(n.d.) Retrieved

http://glame.sourceforge.net/index.var (n.d.)
Retrieved 1/28/04

http://www.perl.org/ (n.d.) Retrieved 1/28/04

http://www.music.columbia.edu/PeRColate/ (n.d.)

Retreived 1/28/04
http://www.xml.com/ (n.d.) Retreived 1/29/04
http://www.virginia.edu/music/VCCM/
Retreived 1/29/04
http://www.opengroup.org/motif/
1/30/04

(n.d))

(n.d.) Retrieved

