
GAIA: Graphical Audio Interface Application

David Topper
McInti re Dept of Music, Universi ty of Virgi nia

topper@virginia.edu

Abstract
GAIA (Graphical Audio Interface Appl ication) is an

open source interf ace for control l ing the RTcmix
(Garton, Topper 1997) synthesi s and effects processi ng
engine. Unti l recently, most RTcmix research has been
limi ted to using text - based scoref i les. The pri mary
motivation behi nd GAIA is to bui ld upon this paradi gm
by providi ng a graphical front end. An emphasi s has
been placed on creating an envi ronment that is easy to
learn, robust and open source to al low for third party
contributi on. GAIA breaks new ground in that it
supports both graphical and text based programmi ng
in the same appl icati on. Objects (or nodes wi thin
the program's graph- like control structure) can
themsel ves be smal l scri pts, written in Perl.
These scri pts can operate on data withi n the
appl icati on as well as trigger RTcmix events in
real time. GAIA uni tes two powerf ul open source
projects, RTcmix and Perl, and provides a
powerful high level GUI for working with both.
Through these mechani sms, GAIA creates a f lexible
and powerf ul envi ronment for control l i ng any number
of synthesis and effects processi ng parameters,
bri nging various techniques to a new level of
real i zation.

1 Introduction
GAIA is a graphical network- style appl icati on

for control l i ng various musical processes.
Speci fic structures (cal led objects) are created on
a blank screen (called a canvas) and connected
together like objects in a mul ti - node graph.
Signals are sent from parents to chi ldren. The
basic concept is similar to that employed by other
graphical network based control appl icati ons (eg.,
Max/MSP, Pd, Open Music, Alsa Modular Synth,
GLAME, etc...). GAIA di f fers from other such
appl icati ons on several levels. It is completely
open source, and distributed under the GNU
General Public License (GPL) (gnu.org 2004).
Synthesi s methods are not “ sub patches” wi thin
the program, but are instead RTcmix
“ instruments.” GAIA's communicati on with

RTcmix is done via both TCP connection and
di rectly via the new “ imbed” module. So the
coding of various synthesi s and effects
processing algori thms is kept in an envi ronment
best sui ted for speed and low latency. This is
becoming a trend in other appl icati ons as wel l
(eg., Percolate (columbia.edu 2004)). Perhaps the
most notable di f ference is GAIA's incorporati on
of Perl di rectly wi thin the graphical structure.
User's can combine any level of graphi cal or
scripted control to sui t the composi ti onal
requi rements at hand.

In order to help support the Open Source
paradigm, GAIA of fers an API for thi rd party
developers to faci l i tate the creation of new
objects and features wi thin the program. Recent
work has focused around video processing, which
is now part of the main GAIA distri buti on, not an
add- on module or separate package. Video data
is broadcast from the “video tracking object” in
the same fashion as any other object. GAIA
forms part of the development on the Portable
and Semi - Portable Audio Workstation (Topper
2001).

2 Design and Implementation
GAIA is wri tten using a combinati on of C and

C++ and buil t with the GTK toolki t (gtk.org
2004), running under Linux. Somewhat derivative
of the Motif f (opengroup.org 2004) API, GTK
objects and functi ons are connected via cal lback
structure. Speci fical ly, the program makes
extensive use of the GTK/GNOME canvas. This
toolki t al lows for many di f ferent types of
graphical objects to be rendered, then moved
around the program window without extensive
programmi ng overhead. After the basic design is
implemented, the canvas takes care of moving
and redrawing GTK objects and other structures.
As a resul t, someone designing a new GAIA object
only needs a very basic knowledge of GTK.

This versati l i ty has faci l i tated several usef ul
features common throughout the envi ronment.
The enti re program window, or canvas, can be
predef i ned to virtual ly any si ze then scrol led
up/down or lef t/ ri ght. This al lows for the
creati on of a graphi cal network larger than the
actual screen size. Similarly, the canvas and al l
the objects contained therein can be dynamical ly
resized via zoomi ng in or out. The GTK/GNOME
canvas takes care of resi zi ng the indivi dual i tems
therein. Specif ic objects are also available to
control any of these functions. For example, i f a
user wanted to trigger a screen change via MIDI
foot swi tch message, they would simply connect
the MIDI event object to the screen change object.

Special purpose objects can also be displayed
outsi de the canvas window. In the case of the
Perl text edi tor, the object i tsel f shows up as a
smal l node with “ show” and “ hide” buttons which
respectively cal l up an external text edi tor for
working on the speci f ic script. Also, in the case
of the video tracking object, the video image is
displayed in a separate window external to the
main canvas. These features faci l i tate cleaner
screen organi zati on.

Objects are highlighted fol lowing mouse focus,
including connecti on l ines (also known as patch
cords in other appl icati ons). So when the mouse
is posi ti oned over a particular i tem, i ts outl i ne
appears in bright red. This lets the user know
preci sely what he/she is about to select.
Mul tiple canvases can be created, all of which are
linked in the same appl icati on or patch.

As wi th most graphi cal network based GUI
applicati ons, signals are sent throughout tree like
structures. A single object can broadcast a signal
to mul ti ple chi l d objects. Similarly, an object can
broadcast dif ferent types of data through its
output connecti ons. Signal executi on can be
ordered lef t - to- right, right- to- lef t or any custom
ordered variation. Double clicking any object wil l
by defaul t ini tiate a signal path. Al l objects take
input signal s from thei r f i rst, uppermost lef t -
hand side input connecti on box.

2.1 Basic GAIA Implementation
GAIA objects fal l into three general

categori es: objects speci f ic to GAIA, those used
to di rectly control an indivi dual RTcmix process,
and Perl scri pts. Al l objects have conf igurable
options speci f ic to thei r operati on (eg., minimum

Figure 1.

and maximum value, stri ng or floating point data,
orientati on, size, etc...).

GAIA speci f ic objects include the standard
range of sl iders, data boxes, timers, 2D graph
plots, and logical operators. Figure 1 il lustrates a
subset of those objects control l i ng a single
running RTcmix process. In thi s example, MIDI
events are used to both start and control the
musical process. This is done by connecting the
MIDI object to an RTcmix TCP object, which in
turn triggers a short RTcmix scri pt (non Perl). So
when a PROGRAM_CHANGE signal is received, i t
triggers a sequence of events. Similarly, VOLUME
and PAN messages are used to process the
incoming audio stream using the RTcmix
“FREEVERB” reverberati on algori thm, each
parameter of which is control led via sl ider
objects.

Singular RTcmix objects (as in figure 1) can
communi cate ei ther to a runni ng RTcmix engine via a
TCP socket connection, or di rectl y via the RTcmix
“ imbed” module. The latter al lows RTcmix to be
incorporated into the GAIA (or any other) program
itsel f via stati cal l y linked library. In the case of TCP
sockets, mul tiple engines can be control led on virtual l y
any number of hosts. This allows GAIA to be used as a
network control ler for a cluster of RTcmix engines
running on dif ferent machi nes.

2.2 The Power of Perl
Although RTcmix has been using Perl as a

front end parser for many years, combining that
abi l i ty with a graphical f ront end represents a
new paradigm. In the case of GAIA, Perl is not
parsing a text f ile. Instead, i t parses and
evaluates a buf fer in real time, maintaini ng a
persi stent state duri ng the enti re run of the
applicati on. Perl provides buil t in functi onal i ty
for this. Specif ical ly, GAIA uses the eval_sv()
functi on which is part of perlembed (perl.org
2004).

Figure 2 illustrates a basic implementati on of
the Perl text buf fer object. In this example, a Perl
script takes input f rom from two sl ider objects
and is executed by a GAIA timer object, which
takes two inputs (a trigger to start pulsi ng and a
pulse interval). The scri pt contains a loop which
plays five notes in ascending pi tch. This
particular script has three inputs, one to execute,
and two for input variables. The fi rst input
variable control s the “ pulse” rate at which the
script is executed. I t is identical to the value sent
to the timer object, but in this case is also used to
control scal ing of note durati on as the tempo
changes. The second variable is f requency, used

Figure 2.

to control the base starti ng f requency of the
scri pt loop. Both vari ables are control led via
sl ider objects. In the case of tempo, the same
slider is used to control the GAIA timer object as
well as send the timer interval value to the Perl
scri pt.

Perl objects can also be created in a separate
text edi ting window. As illustrated by Figure 2 ,
special reserved variables are $inX and $outX
where X corresponds to the respective input or
output connecti on box number. The complete
Perl programming language is supported and
many separate Perl objects can be used
simul taneousl y. In this sense, GAIA could serve
as an IDE for Perl development, faci l i tati ng the
creati on of disti nct subrouti nes as visibly
separate objects. Data is shared globally by
defaul t, but can also be made local in scope as an
opti on. Each Perl text box in GAIA that is not
def i ned to be global in scope is actual ly a Perl
subrouti ne. This fact is hidden from the user,
wi th GAIA maintaini ng a list of al l created Perl
buf fers and thei r respective subrouti ne names.
This al lows data to be cast as local in scope, as
well as providing a speed increase by having Perl
buf fers evaluated in advance of signal executi on.
Buffers are evaluated ei ther by sending a signal to

thei r second input data box, or by clicking on the
“eval” button in the perl text buf f er edi tor. Any
valid perl expression can be executed.

GAIA also enlists the power of Perl for logical
expression evaluators. These objects, cal led Perl
signal condi tion objects, are simi lar to Perl text
buf fer objects. The main di f ference is that they
take input data and are evaluated for boolean
true/ f al se condi ti on. If true, the signal and data
are passed along to the object's outputs.

2.3 Real Time Video Processing
Since GAIA places control of virtual ly any

synthesi s / ef fects processing parameter into a
robust and vastly reconf i gurable envi ronment,
control mechani sms can move beyond MIDI and
other standard protocol s. By reading pixels from
a live video feed it is possibl e to implement any
number of computer vision algori thms to control
audio synthesi s and effects processing.

Figure 3 shows a simple RTcmix WAVETABLE
instrument being control l ed by short and long-
term image pixel di f ference change. In this
example, a process is started by double cl icking a
start - node object, cal led a bl inker object. Blinker

Figure 3.

objects simply al low signal s to pass through,
registeri ng a brief color change (or bl ink) when
the signal is received/ t ransmi tted. They may also
be used to ini tiate a signal path. In this case, the
signal starts a timer object which sets the control
rate for video processing. With each signal sent
to the video tracking object, a single frame is read
and analyzed. Currentl y up to thi rty f rames per
second can be processed, but this is only a
hardware limi tati on imposed by commercial video
equipment. Theoretical ly, higher end video frame
grabbers can also be used to achieve an even
higher data acquisi ti on rate. The video tracker
object takes a trigger as input, and sends out
visual analysi s data of the incoming video stream.
In this case, once the process is started, starti ng
frame dif ference is used to set the tempo of a
pul sed sinusoid. Previous f rame dif ference is
used to control pi tch. So as an object enters the
field of view, a tone begins pulsi ng. As the object
moves about in that f ield, the pi tch increases /
decreases in conjuncti on wi th that movement.

Currentl y, only very basic image processing
algori thms are supported: frame di f ference (both
from immediately previous and start f rame) and
color intensi ty. Previous f rame dif ference can be
used to approximate current movement in a fiel d
of view, i t can be thought of as measuri ng moti on.
Start frame di f ference can be used to measure the
change in state of a scene (eg., a dancer's
entrance), i t also someti mes referred to as
occlusion. Color intensi ty can be used to moni tor
the entrance or exi t of a speci f ic color coded
enti ty.

Mapping of the start f rame dif ference data is
done via the GAIA scale object, which is
particularly interesti ng due to i t's dynamic abil i ty.
The scale object can take five inputs: input data,
max and min, and output max and min. Each of
these can be varied in real time. So, for example,
i f the user wanted to change the output register
in thi s example, s/he would simply change the
output maximum and/or minimum.

GAIA uses the Video4Linux (V4L) and the Linux
IEEE 1394 (aka. Firewi re) drivers for grabbing
video f rames. The former of fers a wide range of
support for PCI and PCMCIA video input devices,
many of which perf orm a good deal of
computati onal work on board, thus increasing the
ef fective frame processi ng rate. Whereas the
latter provides support for more recent hardware
and is more general purpose.

3 Internal Programming API
GAIA is written primari ly in C but uses some

C++ where applicable, particularly when
communicati ng with the RTcmix “ imbed” module.
Various structures and functi ons exist to provide
an easy to use API for creati ng new objects.

3.1 Structures
The top level structure is cal led a "canvas

object." It represents the top level of the visual
component you see on the screen. The object
contains pointers to speci f ic objects as well as the
graphical widgets necessary for renderi ng and
movement; this includes the graphical component
of an object's connection (eg., input and output)
boxes. Canvas objects point to a single or linked
list of "signal_objects."

The second level structure is cal led a
"signal_object." This is the primary uni t of object
design. Al l objects are signal objects, or groups
of signal objects. This structure contains various
pointers to speci f ic objects and thei r internal
data. All computati onal aspects of an object are
done on this level as well. So, for example, in the
case of the Perl object the text edi ti ng window is
part of the canvas object (menti oned previously)
but the speci f ics of executi ng the running Perl
interpreter (to parse and evaluate the speci f ic
text) are done in the signal object, speci f ical ly by
the signal_functi on.

The signal object also maintains pointers to an
object's internal (vs. graphic) connecti on box
structure. Each "box" is a basical ly a pointer to a
series of "connection" structures which are in
essence special purpose objects themselves. As a
resul t, i t is the signal object that receives event
triggering routed through the input and output
boxes for a given object network.

3.2 Functions
Creati ng a new object is relatively easy. There

are four basic functi ons requi red:
properti es_window(), creation_functi on(),
connecti on_functi on(), and signal_functi on().

The properti es_window() function al lows the
user to conf igure the particular object. An API is
provided to help the programmer create a pop-
up dialog box for the given object. This is used to
set ini tial parameters such as maximum and
minimum value, data type, size, f i lename, and any
other speci f ic options necessary to the object in
questi on.

Once the user enters the informati on from the
above dialog, i t is then passed to the

creati on_functi on() via an in_params[] array. The
creati on functi on basical ly def ines the main
aspects of the object, incl uding any special
purpose graphical objects or GTK structures, as
well as input /output boxes. GTK supports a box
packing mechani sm (gnome.org 2004) for
graphical objects. GAIA simpl i f i es that paradigm
somewhat by requi ri ng the programmer to
provide only a top level pointer to the highest
level packed box. This pointer is used by the
canvas_object structure to draw the objects and
move or resi ze them on the screen canvas as
needed.

As in the properti es_window() functi on, an API
is provided here to faci l i tate connection box
creati on. The programmer simply needs to def ine
the total number of boxes, thei r type (INPUT,
OUTPUT, DATA, TEXT, etc...), the edge on which
they will be drawn (NORTH, SOUTH, EAST, WEST)
and the location along the respective edge (in
percent).

When object's are connected together, the
respective connecti on_function() is executed.
This function al lows objects to make speci f ic
conf igurati ons depending on what they're
connected to. For example, i f a parent object
outputs floati ng point data the child object wil l
receive this informati on at connection time and
then be aware of this data type as input. This
system allows for the creati on of "smart
connecti ons" which can be used to faci l i tate
special purpose connecti ons between objects.
Scale objects, for example, make use of the
connecti on_f unction() in order to set minimum
and maximum values for thei r input and output.

Event triggeri ng is accompl ished through each
object's signal_functi on(). Signal functi ons are
member functi ons of the signal_object structure.
The programmer simply needs to determine in
this functi on what is done wi th input and output
data, or if some other action needs to be taken
(eg., wri ti ng to a TCP socket). Once an object is
triggered, i t sends out signal s to every object
connected to al l of i ts output boxes (defi ned
earl ier). The process is recursive and conti nues
unti l there are no more connecti ons.

Once the four main functions are def i ned, the
object's respective C fi le can be included in the
Makef i le and then compi l ed into the executable.
There also is some minor addi tional bookkeeping
necessary to maintain object types and speci f ic
attri butes.

4. Future Directions
GAIA, while stable, is a relatively new

applicati on. A main area of work in the short
term wil l focus around the creation of new
objects. GAIA also currently stores conf igurati on
data in a propri etary format. The next logical
stage is to replace this storage mechani sm with
XML (xml.org 2004) which is rapidly becoming a
new standard.

RTcmix has recently been ported to OS X.
GAIA support for OS X, however, is sti l l in a very
prel iminary phase. Support for X windows based
libraries like the GTK canvas, however, sti l l
involves some addi tional work.

As a corol lary to GAIA's new video processing
object, a video output object is in the works using
the Linux SDL l ibrary and Gstreamer. The SDL
library has al ready been used to port many
commercial games and graphics applications to
Linux. Gstreamer aims at being the new defaul t
Linux mul timedi a API, but is sti l l in the early
development phase. GAIA can be downloaded via
f tp at: http: / / presto.musi c.vi rginia.edu/pub/gaia

References
Garton B. G., and D. Topper. 1997. RTcmix - -

Using CMIX in Real Time, Proceedings of the
International Computer Music Conference, 1997.

Topper, D. T. 2001. PAWN and SPAWN (Portabl e
and Semi Portable Audio Workstat ion). Proceedings of
the International Computer Music Conference, 2001.

http:/ /devel oper.gnome.org/doc/A PI /gtk (n.d.)
Retrieved, 1/16/04

http:/ /www.gnu.org (n.d.) Retrieved 1/10/04
http:/ /www.cycl ing74.com (n.d.) Retrieved 1/20/ 04
http:/ /ht tp: / /www-

crca.ucsd.edu/ ~msp / sof tware.html (n.d.) Retrieved
1/22/ 04

http:/ /www.i rcam.f r /equi pes/ repmus/ OpenM usic/
(n.d) Retrieved 1/22/04

http:/ /www.agnul a.org/packages/al sa_modul ar_syn
th/ (n.d.) Retrieved 1/28/04

http:/ /gl ame.sourcef orge.net / i ndex.var (n.d.)
Retrieved 1/28/04

http:/ /www.perl .org/ (n.d.) Retrieved 1/28/ 04
http:/ /www.musi c.col umbi a.edu/PeRColate/ (n.d.)

Retreived 1/28/04
http:/ /www.xml .com/ (n.d.) Retreived 1/29/04
http:/ /www.vi rgi nia.edu/musi c/VCCM / (n.d.)

Retreived 1/29/04
http:/ /www.opengroup.org/ moti f / (n.d.) Retrieved

1/30/ 04

