GAIA: Graphical Audio Interface Application

David Topper

Virginia Center for Computer Music, University of Virginia
email: topper@virginia.edu

Abstract

GAIA (Graphical Audio Interface Application) is an
open source interface for controlling the RTemix
synthesis and effects processing engine. Despite
several applications that exploit RTcmix's TCP
communication protocol there are no standard GUI
control mechanisms providing a high degree of
flexibility. As a result, most research remains confined
to text based scorefiles. The primary motivation
behind GAIA is to build upon this paradigm by
providing a graphical front end. An emphasis has been
placed on creating an environment that is easy to learn
yet still provides the ability to create complex
configurations. As the name implies, GAIA's goal is to
provide a rich platform for the creation of virtually
unlimited new compositional interfaces.

I. Overview and Motivation

GAIA facilitates the creation of a wide variety of
control structures (called widgets) on-the-fly. Widgets
are created by left clicking the mouse and selecting
from a menu of available types. Connections between
widgets are made by clicking on an item's connection
box (input or output) and dragging a line to or from
another item's input or output box. Despite similarities
with other popular interfaces, GAIA is an attempt to
move beyond the scope of previous generation
graphical network based applications. Itis a
completely open environment with an API for creating
new widgets. Fully integrated into the RTcmix
scripting environment, it also allows for both graphical
and scripted control. GAIA is part of continuing
development on the Portable and Semi-Portable Audio
Workstation 2,

II. Design and Implementation

GAIA widgets fall into two general categories: objects
specific to GAIA and those used to directly control
RTcmix. All widgets have configurable options
specific to their operation (eg., minimum and
maximum value, string or floating point data,
orientation, size, etc...).

GAIA is written in C and built with the GTK toolkit,
running under Linux and in Alpha version under Mac
OS X. Somewhat derivative of the Motiff API, GTK
widgets and functions are connected via callback
structure. Specifically, the program makes extensive
use of the GTK/GNOME canvas. This toolkit allows
for many different types of graphical objects to be

rendered, then moved around the program window
without extensive programming overhead.

The versatility of the GTK canvas has made several
unique features possible. Widgets are highlighted
following mouse focus, including connection lines (also
known as patch cords in other applications). So when
the mouse is positioned over a particular item, its
outline appears in bright red. This lets the user know
precisely what he/she is about to select. The entire
program window, or canvas, can be predefined to
virtually any size then scrolled up/down or left/right.
Similarly, multiple canvases can be created, all of
which are linked in the same application or

patch. Any given canvas can be made larger or smaller
by zooming in or out. Specific widgets are also
available to control any of these functions. For
example, if a user wanted to trigger a screen change via
MIDI footswitch message, the MIDI event widget is
simply connected to the screen change widget.

RTcemix widgets communicate to a running RTcmix
engine via a TCP socket connection. Multiple engines
can be controlled on virtually any number of hosts.
This allows GAIA to be used as a network controller
for a cluster of RTcmix engines running on different
machines. Commands are identical to those issued in
an RTcmix Minc scorefile. The main difference is that
the command arguments can be changed within the
GAIA interface before being sent out.

The following two examples illustrate some of the basic
functionality GAIA offers. The first (figure 1)
demonstrates a simple MIDI controlled Karplus Strong
algorithm (RTcmix's STRUM instrument). The second
(figure 2) is a stand-alone controller for multichannel
polyrhythms.

Figure 1 shows three basic groups of widgets. In the
upper right hand corner an RTemix connection widget
is linked to short script. When activated, they work
together to either launch an instance of the RTcmix
engine or connect to one already running (locally or
remotely) then send it a few basic configuration
parameters. It should be noted that the script widget
can also be used to send any type of RTcmix scorefile,
not just configuration data. The larger group of sliders
and MIDI objects in the lower left hand corner
represent the NOTE_ON section. When a MIDI
NOTE_ON event is received, it's value is passed to a
"scale" widget, which in turn passes on a value to the
algorithm's pitch field.

The scale widget illustrates some of the
flexibility GAIA offers in terms of widget

BN Gaia (v 0.1) <2>

File Options

20X

Heip |

OM_PITCH

59.0

Scale
36.0[59.0 [36.0
7.00 [8.11 [z.00

e T %

START1

localhost
not connected

RTcmix sequence

load(ISTRUN) A
setline(,0,1,1,18,1,11,0

Insert Delete

NOTE_OFF | OFF_PITCH
[0:00 [55.0

[o.00 108 [s11 Jooo [ooo [1.05 [o.se [s.11 [o.00 [oso [ooo [o.oo fooo |

M_RECALL 55

M_STORE[59 [12

e [N ‘

Figure 1.

design and functionality. When initially
connected to another widget, a scale widget
makes a query to determine parent and child
min/max values and data type. It then
automatically sets a local copy of these
parameters. It is important to note here that
the scale widget is reconfigurable in real time.
The upper arguments are input minimum,
input value, and input maximum. The lower
arguments are the same, but for output.
Output scale data in this example is
represented in octave / pitch class, input scale
data 1s MIDI.

All values have their own connection boxes and can
hence be modified by other connected widgets. The
scale performs a linear interpolation between 36-96
(note on range for a 61 key midi keyboard controller)
and 7.00-12.00 (5 octaves = 60 notes). So, for example,
to change the scale being used to 24 notes per octave,
all that needs be done is set the output maximum to
9.06 (one octave and six semitones above middle C),
instead of 12.00 (four octaves above middle C). Data
type is also a configurable option for the scale widget.

The example also illustrates some of the configurable
aspects of the slider widget. They can be set to specific
sizes, increments, and orientations. The ones in this
example are all vertical, with scale markings, set to
"local trigger." When a slider is moved, a "trigger"
event is send out to all its connected children. They

receive both the signal and the slider's data value. Data
triggering, the even sequence defined by a given
network of widgets) can be set to activate any time a
widget's value changes, or only when a widget is
specifically activated / triggered.

The group of widgets in the lower right hand corner
represent the NOTE_OFF section. Together they
complete a multitimbral synthesis controller, the only
limit to the number of consecutive running notes being
processor speed. This is achieved via RTcmix's method
of dealing with real time parameter updates '.

The widget sending out the synthesis command is
labeled "START1" (part of the NOTE_ON group) just
as in an RTcmix scorefile used to control the
instrument. The main output of this widget to other
GAITA widgets is the note event number, starting at 1
and counting sequentially up to MX_CUR_NOTES
which is set default to 100, then starting over at 1 again.
RTcmix uses this index to update parameters. The
ON_PITCH and note event number are stored in an
internal array via the M_STORE widget. The
information is then used in the third group of widgets
located in the lower right hand corner. A NOTE_OFF
event triggers the M_RECALL widget to look up which
note event corresponded to the particular OFF_PITCH.
This information is then passed in turn to an "rtupdate”
command, which sets the value of piffled 1 (duration)
to zero.

Figure 2 illustrates a control structure that does not
rely on MIDI data. Instead, it uses GAIA's "timer"
widget to send out two different pulses to an RTcmix

[e (v 0.1)

Elle Options

FEEER

Heip |

locathost \fander [100
not connected — — —
Pulse | | Dur ap |
l | = Fre |
000 | ooo o —

o
RTcmix sequence u.qu 500 J

I0adl (WA YETABLE) = e
sefline(0,0, 5,1, 10,1, 15,0)
makegen(z, 10, 1000, 1, 0.2
reset(10000)

mmJ it
150 jpod
150(
200(
250(
300(
3s0(
400
450{
s00(

Insert Delete 110
5501

010
020
0.30
040
050
.60
070
080
0.s0
1.00
110
qz0) | 12 500(
1.30 ;(23 650 5004
)

i 6501
i 7001
a 7501
5 8001
501

1.9 1.90 350 CHEn
H 2 200(| 1000 a0
1000
Fimerl o7 | Rander| [050 ;
o]

ity ey \WAVETAELE \uuﬂ |”“‘7

\ 11_/&

WAVETEBLE [0 o0 (021 [1e:1 [s45 [onn |

Hanaed [100

Pulse D

0.00 0.00
040 040
nsz usz
0.30 0.30

0.40 0.40
0.50 0.50
0.60 0.60
0.70 0.70
0.80 0.80
0.30 0.30
1.00 1.00
110 110
120 1.20
1.30 1.30
140 140
1.50 1.50,
1.60 1.5
1.70 140
1.80 1450
1.90 a0

z.00 .00
[017] B

Timer [0.17 Rander [050
s]

AN
Dy confg \WAVETABLE \nma \nms ‘

\\ l_

WAVETABLE Gor (021 (10w [sas (011

Figure 2.

WAVETABLE lookup instrument. Pitch and amplitude
are randomized. Audio output is to four channels of an
eight channel audio system. There are three basic
groups.

In the upper left hand corner is an RTcmix connection
widget and a script with some basic commands, similar
to the previous example. The two groups of four sliders
make up the two different rhythmic controls.

A "blinker" object controls the start and stop of a
"timer", which in turn takes one argument, tempo.
Double clicking the blinker starts and/or stops the
timer. A slider is connected to the timer's input, thus
allowing for independent tempo control. As in the
previous example, the slider is set to "local trigger."

Each timer is connected to two "randier"
widgets, which generate random numbers
between zero and X (the widget's input
argument) when triggered. In this particular
instance, these widgets control pitch and
amplitude respectively. Between each timer
and WAVETABLE command is an auxiliary
RTcmix command, bus_confide. This sets the
audio routing for the instrument in question.
So in this case, one rhythm is being piped to
channels one and seven (front right and left),
while the other to channels three and five (rear
right and left).

It should be noted that since connections are special
widget types, GAIA can also support execution
priority. Rather than only supporting a static left-to-
right or right-to-left convention, GAIA allows the user
to define which order connections for a given widget
are executed. The default ordering is by creation. If
connection 1 is made before connection 2, connection 1
will execute first. The change is made by placing the
mouse pointer over the given connection line, then
right clicking to change the connection properties.

GAITIA makes use of its own MIDI parser. It can
communicate with the Mediator MS-124w serial MIDI
adapter (via raw serial communication) or the SO
MIDI driver.

III. Widget Structure and API

As stated previously, GAIA is written in C. But in
order to provide an easy to use API for creating new
widgets, elements of C++ have been employed through
C structures. The main hierarchy for GAIA structures
is as follows.

The top level structure is called a "canvas object." It
contains pointers to specific widgets as well as the
graphical objects necessary for rendering and
movement. This includes the graphical component of a
widget's connection (eg., input and output) boxes.
Canvas objects point to a single or linked list of
"signal_objects."

The second level structure is called a "signal_object."”
This is the primary unit of widget design. All widgets
are signal objects, or groups of signal objects. The
structure contains various pointers to specific widgets
and their data. The signal object also maintains
pointers to a widget's internal (vs. graphic) connection
box structure. Each "box" is a basically a pointer to a
series of "connection" structures which are in essence
special purpose widgets themselves. As a result, it is
the signal object that receives event triggering routed
through the input and output boxes for a given widget
network.

Creating a new widget is relatively easy. There are four
basic functions that need to be defined:
properties_window(), creation_function(),
connection_function(), and signal_function().

The properties_window() function allows the user to
configure the particular widget. An API is provided to
help the programmer create a pop-up dialog box for
the given widget.

Once the user enters the information from the above
dialog, it is then passed to the creation_function() via
an in_prams|[] array. The creation function basically
defines the main aspects of the widget, including any
special purpose graphical objects or GTK structures, as
well as input/output boxes. GTK supports a box
packing mechanism * for graphical objects. GAIA
simplifies that paradigm somewhat by requiring the
programmer to provide only a top level pointer to the
highest level packed box. This pointer is used by the
canvas_object structure to draw the widget objects and
move them around the screen if need be.

As in the properties_window() function, an API is
provided here to facilitate connection box creation.

The programmer simply needs to define the total
number of boxes, their type INPUT, OUTPUT, DATA,
TEXT, etc...), the edge on which they will be drawn
(NORTH, SOUTH, EAST, WEST) and the location
along the respective edge (in percent).

When widget's are connected together, the respective
connection_function() is executed. This function
allows widgets to make specific configurations
depending on what they're connected to. For example,
if a parent widget outputs floating point data the child
widget will receive this information at connection time
and then be aware of this data type as input. This
system allows for the creation of "smart connections"
which can be used to facilitate special purpose
connections between widgets. The scale widgets in the
previous example make use of the

connection_function() in order to set minimum and
maximum values for their input and output.

Event triggering is accomplished through each widget's
signal_function(). Signal functions are member
functions of the signal_object structure. The
programmer simply needs to determine in this function
what is done with input and output data, or if some
other action needs to be taken (eg., writing to a TCP
socket). Once a widget is triggered, it sends out signals
to every widget connected to all of its output boxes
(defined earlier). The process is recursive and
continues until there are no more connections.

Once the four main functions are defined, the widget's
respective C file can be included in the Makefile and
then compiled into the executable. There also is some
minor additional bookkeeping necessary to maintain
widget types and specific attributes.

IV. Future Direction and Conclusion

GAIA, while stable, is a relatively new application. A
main area of work in the short term will focus around
the creation of new widgets. There are many widget
categories yet to be explored. The next release of the
package will contain a complete list of mathematical
and logical widgets. Graphics objects will also support
a "mini view" where a widget or group of widgets can
be minimized into a smaller, yet still completely
relevant (eg., having all the input and output
connections) widget graphic. Future releases will
involve widgets that communicate with special purpose
controllers outside the scope of MIDI (eg., raw
peripheral data, computer vision systems).

RTcmix currently only supports one-way TCP
communication. A logical step would be to make this
bi-directional. This would allow for several new
features, not the least of which is the manipulation of
analysis data for resynthesis.

RTcmix has recently been ported to OS X. GAIA
support for O S X is still in a very preliminary phase.
The synthesis engine works well under the new
operating system. Support for X windows based
libraries like the GTK canvas, however, still involves
some additional work.

As a whole, GAIA makes significant steps towards the
creation of a programming environment for the
generation of virtually unlimited new compositional
interfaces. The ease of use the environment offers and
its direct ties to the RTcmix scripting environment
provide a useful interface for working with real time

synthesis on the Linux and Mac OS X platforms. It's
open source API also provides a useful starting point
for limitless future development and contribution from
a wide variety of sources.

V. Resources

1. Garton B. G., and D. Topper. 1997. RTcmix -- Using
CMIX in Real Time, Proceedings of the International
Computer Music Conference, 1997.

2. Topper, D. T. 2001. PAWN and SPAWN (Portable and
Semi Portable Audio Workstation). Proceedings of
the International Computer Music Conference, 2001.

3. The GTK reference manual:
http://developer.gnome.org
/doc/API/gtk/index.html

4. The GNOME interface reference library:
http://developer.gnome.org
/doc/APl/libgnomeui/book1.html

5. RTcemix source code archive:
http://presto.music.virginia.edu/rtcmix/

6. GAIA home page:
http://presto.music.virginia.edu/gaia

